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A B S T R A C T

Step adhesive joints have a special characteristic quite different from other joints. When initial delamination 
occurs in other joints such as butt, lap and scarf joints, final failure always occurs. In these cases, the external 
stress causing initial delamination σInitial

c is equal to the final failure stress as σFinal
c = σInitial

c . However, in step 
joints, the final failure stress σFinal

c can be greater than the initial delamination stress σInitial
c < σFinal

c . To clarify the 
adhesive improvement mechanism, first, this paper discusses the ISSF (Intensity of Singular Stress Fields) for 
fully bonded step joint by varying the number of steps NS. Second, the singular stress field causing 2nd debonding 
is discussed by analyzing partially delaminated step joint. The results show that 2nd debonding requires larger 
external load than the initial debonding as σInitial

c < σFinal
c . This is because under the same external load the 

singular stress causing the 2nd deboning is smaller than the one causing the initial debonding. When NS ≥ 6 and 
suitable overlap length, the final bond strength σFinal

c can be more than 3.6 ~ 4.4 times larger than the initial 
delamination stress σInitial

c ≪σFinal
c resulting in much larger bond strength.

1. Introduction

With the recent demand for energy conservation and its increasing 
importance, the current automotive industry is trying to use a variety of 
lightweight materials in the right places. Such multi-materialization is 
one of the most promising solutions to achieve this goal [1,2]. In multi- 
materialization, joining these completely different materials is a major 
challenge to fully exploit the characteristics of each material [1]. 
Welding, mechanical joining, and adhesive bonding are some of the 
joining methods that can be used to realize multi-materialization [3]. 
Among these, adhesive bonding has many advantages such as smooth 
surfaces, joining dissimilar materials, weight reduction, sealing, and 
production economics such as reduced equipment costs and man-hours. 
It is also believed to maintain the structural integrity of the adherend, 
thereby ensuring the fatigue resistance of the bonded part better than 
mechanical bonding, which is a major factor in the adoption of adhesive 
bonding for multi-materials [4,5]. In recent years, the use of electronics 
has been promoted in a wide range of fields, such as the automotive 
industry, the aviation industry, and industrial equipment [6–9]. Indeed, 
hydraulic drive systems are heavy and significantly contribute to the 
total weight of a vehicle. By electrifying these systems, it is possible to 

reduce the vehicle’s weight, which can lead to improved fuel efficiency 
and enhanced performance. Furthermore, electrification allows for a 
transition to more energy-efficient power transmission systems, which 
can also reduce environmental impact [10].

In this way, the requirements for semiconductor packaging tech-
nology are becoming more diverse and more important with the trend 
toward smaller size, higher functionality, and higher performance 
[11,12]. New materials and structures are being actively introduced into 
the development of electronic components. Thus, adhesive bonding 
technology is becoming increasingly important in modern industry. 
However, as the number of dissimilar material bonding interfaces in-
creases by changing the direction of loading and the shape of the bonded 
joint, a specific singular stress field is formed [13,14] at the edge of each 
interface due to a mismatch in deformation, and the risk of delamination 
failure increases. Therefore, proper evaluation of delamination strength 
is essential to ensure high reliability in adhesive bonding [15,16]. Hat-
tori et al. [17], Koguchi et al. [18,19] and Ikeda et al. [20] have con-
ducted a series of pioneering studies on the interface strength focusing 
on the stress singularity in electronic devices. In power device packages, 
a method of mechanically bonding the lead frames that mount the de-
vices to the encapsulating resin by forming microscopic irregularities at 
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the bonding interface has been used to improve the bonding strength 
between the lead frames and the encapsulating resin [21]. Terao et al. 
investigated the bond strength between the encapsulating resin and 
nickel plating by forming minute irregularities during electrolytic nickel 
plating and showed that the bond strength was improved by a factor of 
four or more by adding irregularities [22].

The authors have explicitly defined ISSF as the Intensity of Singular 
Stress Field that appears at the interface end. Then, the bond strength of 
butt joint [23–25], lap joint [26,27] and scarf joint [28] can be 
expressed as ISSF=constant even if the bonded geometry is changed. 
This ISSF is equivalent to the stress intensity factor (SIF) in the crack 
problem, and ISSF=constant is equivalent to fracture toughness = con-
stant in the cracked material. This study deals with the step joint shown 
in Fig. 1, considering the unique features of this joint, as shown in 
Section 2. Examples of the practical importance of step joints can be 
found in aircraft repair [29,30]. This is because adhesively bonded 
repair patches are mechanically efficient, and they can be quickly 
applied depending on the size of the repair and the proficiency of the 
repair technician [29]. In aerospace, where flat surfaces are often 
required to meet aerodynamic requirements, stepped repair patches are 
often applied as shown in Fig. 2 [29,30]. This paper will clarify the bond 
strength improvement of bonded shapes with such stepped areas 
[31,32].

2. Special aspects of step joint different from other joints

Step joints have some special features compared to other joints and 
the difference can be described as follows.

1) The joint area is larger than that of an ordinary straight joint, and 
thus the joint strength can be expected to be improved. Unevenness of 
the bonding interface can be simulated by changing the number of steps 
NS.

2) In other adhesive joints such as butt, lap and scarf joints, the initial 

delamination stress σInitial
c is equal to the final failure stress as σFinal

c =

σInitial
c . In step joints, however, the final failure stress σFinal

c can be greater 
than the initial delamination stress as σInitial

c < σFinal
c .

3) The improvement in bond strength may be discussed through the 
analysis and experiment of the step joint by investigating the special 
characters 1) and 2).

In this way, since the importance of the step joint shown in Fig. 1 is 
well-known, several studies are available including stress analyses by 
Erdogan [33] and NASA reports [34,35], and experimental study by 
Mori et al. [31,32]. However, those previous studies [31–35] have not 
considered yet the ISSFs at corner points and interface ends. As an 
example, a singular stress field is generated at the adhesive interface end 
denoted by Point A. The ISSF at Point A controls initial debonding 
[31,32,36]. Mori et al. [31,32] investigated the adhesive strength of step 
joint in Fig. 1(a) experimentally and obtained the results in Fig. 3. As 
shown in Fig. 3, Mori et al showed that the final debonding stress σFinal

c is 
different from σInitial

c and larger than the initial debonding stress σInitial
c as 

can be expressed σInitial
c < σFinal

c . Especially, when NS is larger as NS ≥ 6,
σFinal

c is much larger than σInitial
c as can be expressed σInitial

c ≪σFinal
c . Those 

experimental results show that after debonding happened from point A 
under the initial critical stress σInitial

c , the debonding stops and larger 
external stress become necessary.

Therefore, in this paper, partial delaminated step joint in Fig. 1(b) is 
newly, considered. Then, another singular stress field appearing at Point 
B is newly focused. By comparing the singular stress fields as well as the 
ISSFs at point A and Point B, the experimental results σInitial

c < σFinal
c in 

Fig. 3 will be considered. One may think that when NSis very large, then 
the step joint becomes a scarf joint. Previously, the authors analyzed the 
scarf joint strength when two distinct singular stress appear at the 
interface end [28]. However, those scarf joints [14] always have σFinal

c =

σInitial
c different from the step joint having σInitial

c < σFinal
c . Therefore, this 

paper does not consider the scarf joints equivalent to the step joints 

Fig. 1. Step joint consisting of S45C adherend and epoxy resin adhesive. Fig. 1(a), (b) are useful for investigating Fig. 3 where the final debonding load σFinal
c is larger 

than the initial load σInitial
c < σFinal

c .
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having infinitesimal steps. This paper focuses on the certain finite di-
mensions of step contributing σInitial

c < σFinal
c even when NSis very large.

3. Singular stress field σxA(r1) at Point A by analyzing fully 
bonded step joint

In some adhesive structures, sometimes delamination or interface 
crack was treated in the category of fracture mechanics. This is because 
there exists delamination initiation, propagation and the last point of the 
delaminated area. For each step joint, the stress states corresponding to 
the initiation, propagation to, e.g., middle point of the step and the last 
point are different. Recently, except for, e.g., cohesive zone method 
already incorporated into, e.g., ABAQUS, a new method [37] has 
occurred in the literature, which is much easier to predict delamination 
initiation, propagation and the last point of delaminated area. The 
method [37] described does not require any initial crack in a laminate. It 
automatically informs whether a laminate/bimaterial under consider-
ation can initiate an interlaminar crack or not. If yes, it can further tell 
how the initiated delamination will propagate. However, those studies 
[31–35,37] did not consider the ISSFs at interface ends with no crack 
explicitly. In other words, conventional fracture mechanics approaches 
often consider cracks because they cannot treat ISSFs directly. In the 
fully bonded step joint in Fig. 1(a), different singular stress fields are 
formed at the interface end A and several corners such as Point B. As 
shown in Appendix A, the adhesive strength of butt and lap joints can be 
expressed as a constant ISSF [31,32,36] when there is no crack. Also, as 
shown in Appendix B, since the singular stress at Point A is larger than 
the one at Point B, the initial debonding always occurs at the Point A 
because the singular stress field at Point A is more severe than others. 
Furthermore, as shown in Appendix C, the mesh-independent ISSF can 
be analyzed easily by applying the proportional method [23–28]. From 
Appendix A~Appendix C, the readers may understand that the ISSF 
method can be applied more usefully and more conveniently than other 
methods. In this Section, therefore, the singular stress at Point A will be 
focused when there is no crack.

The geometry of step joints investigated in this study is mainly based 
on that used in the experiments of Mori et al. [31,32]. Since the 
dimensionless ISSF defined in this section is determined only by the joint 
geometry independent of the dimensions, the following discussion is 
applicable up to the scale for electronic devices. To investigate the effect 
of the number of steps NS on the ISSF (Intensity of the singular stress 
field), the analysis is performed by varying NS under fixed joint thick-
ness W and overlap length lb. Specifically, the joint length l1 = 300 mm, 
thickness W = 10 mm, and overlap length lb = 100 mm are fixed, and the 
number of steps NS varies as NS = 2, 4, 6, and 10. The thickness of the 
adhesive layer h = 0.05 mm, and the butt length “t” of each step is equal 
as t = W/NS. The overlap length of the adhesive layer is denoted by l2, 
and the overlap length of each tier denoted by l2 is equal as l2 =

lb/(Ns − 1). These models were considered in the experiments of Mori 
et al. [31,32]. In this study, the adhesive layer thickness is fixed as h =
0.05 mm and the overlap length is fixed asl2 = 10 mm, W=100 mm. In 
future studies, the effects of h and l2 will be investigated considering 
recent studies [38].

The singular stress field at Point A in Fig. 1(a) is identical to the one 
at Point A* in Fig. 4. This is because the singular stress field is deter-
mined from the local geometry around the Point A (see Fig. 1 and Fig. 4). 
Therefore, the difference between the stress at Point A and the stress at 
Point A* can be expressed as the ISSF. Therefore, the ISSFs of the butt 
joint in Fig. 4 analyzed in previous studies [23,24] can be used as the 
reference solution in this study (see Appendix A). The stress distribution 

Fig. 2. Step repair patch that meets the aerodynamic requirement of a smooth and flat surface. This step joint consists of a layered CFRP composites adherent and 
film epoxy adhesive.

Fig. 3. Final debonding external stress σFinal
cEXP that is much larger than initial debonding external stress σInitial

cEXP when NS ≥ 6 in step joint in Fig. 1(a) obtained 
experimentally by Mori et al [31,32].

Fig. 4. Reference model for point A.
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at the interface around Point A is expressed in Equation (1) from the ISSF 
at A denoted by KA

σ,λA . 

σxA(r1) =
KA

σ,λA

r1
1− λA (1) 

where r1 is the distance in the y-direction from point A in Fig. 1(a). As 
shown in equation (1), the interface stress σxA has a singularity of the 
form σxA∝ 1/r1

1− λA . The singularity index λA at Point A can be obtained 
as a root of the following characteristic equation (2) [39,40], which can 
be derived from the local boundary condition around the Point A. 
Equation (2) always has only one real root, λA<1, when α(α − 2β) >
0 [41]. Therefore, the singular stress field at Point A is dominated by the 
single ISSF KA

σ,λA . 

[
sin2

(π
2

λA
)
−
(
λA)2

]2
β2 + 2

(
λA)2

[
sin2

(π
2

λA
)
−
(
λA)2

]
αβ

+
(
λA)2

((
λA)2

− 1
)

α2 +
sin2( λAπ

)

4
= 0

(2) 

where α and β are Dundurs composite parameters and are defined in 
Equations (3) and (4) from the shear modulus Gj of the adherend and the 
adhesive and Poisson’s ratio νj (j = 1 for the adherend and j = 2 for the 
adhesive).

Table 1 shows the material properties of adhesive and adherend for 
step joint in Fig. 1 including E=Young’s modulus, ν = Poisson’s ratio, 
σBulk

B =Adhesive bulk strength, σButt
c =Bulk joint strength in Fig. 4 when h 

= 0.05 mm, τLap
c,lb=25=Lap joint strength in Fig. 10 (c) when lb = 25 mm, 

Kσc = Critical ISSF, (α, β) = Dundurs parameters, and λA, λB
1 ,

λB
2=Singularity index. The singular stress is characterized by the singu-

larity index, which can be determined from Dundurs parameters as 
shown in Equation (2). In this study, the ISSFs at interface ends and 
corner points when there is no crack are focused because the adhesive 
strength can be expressed as the critical ISSF in Table 1 as shown in 
Appendix A [31,32,36]

α =
G1(κ2 + 1) − G2(κ1 + 1)
G1(κ2 + 1) + G2(κ1 + 1)

, β =
G1(κ2 − 1) − G2(κ1 − 1)
G1(κ2 + 1) + G2(κ1 + 1)

(3) 

κj =

⎧
⎪⎨

⎪⎩

3 − νj

1 + νj
(planestress)

3 − 4νj(planestrain)
(j = 1, 2) (4) 

The ISSF KA
σ,λA at the interface end can be defined in Equation (5). And 

the dimensionless ISSF FA
σ,λA at Point A is defined in Equation (6). Since it 

is dimensionless, it is the same value for similar geometries and can be 
applied up to the scale for electronic devices. Here, σ∞

x is the far-field 
tensile stress and h is the thickness of the adhesive layer. 

KA
σ,λA = lim

r→0

[
σxA(r1) • r1− λA

]
(5) 

FA
σ =

KA
σ,λA

σ∞
x W1− λA (6) 

In the previous studies the proportional method to calculate the ISSF 
was explained in detail [23–28]. In this study, therefore, how to obtain 
the exact ISSF is briefly described in Appendix C. Fig. 5 shows the 
dimensionless ISSF FA

σ = KA
σ /(σ∞

x W1− λA
) at Point A by varying number of 

steps NS obtained by fully bonded step joint in Fig. 1(a). In Fig. 5, the 
ISSF when NS = 1 is equivalent to the result for the butt joint. Compared 
to the butt jointNS = 1, the value of FA

σ,λA is smaller except for the case of 
the number of steps Ns = 2. Then, FA

σ,λA decreases as the number of steps 
NS increases. For example, FA

σ,λA = 0.0760 for stepNS = 10, whereas FA
σ,λA 

= 0.0917 for butt joints. In other words, the value of ISSF at Point A 
decreases by about 14.5 ~ 16.2 % whenNS = 10 compared to the case of 
butt joint NS = 1.

Fig. 6 illustrates the initial debonding stress σInitial
c obtained from the 

ISSF in Fig. 5 in comparison with σInitial
cEXP experimentally obtained. In 

Fig. 5, the light blue line shows σInitial
c and the blue line shows σInitial

cEXP . 
From Fig. 3 and Fig. 5, the average critical ISSF can be determined as 
KAInitial

σc,ave = 7.18MPa • mm1− λA and indicated in Table 1.The initial 

debonding stress σInitial
c = KInitial

σc,ave/(FA
σ W1− λA

)in Fig. 6 can be determined 

from KAInitial
σc,ave . Similarly, the 2nd delamination stress σ2nd

c = K2nd
σc,ave/

(FB
σ W1− λB

) in Fig. 12 in Sections 5 and 6 can be determined from KBInitial
σc,ave . 

As shown in Fig. 6, the variation of σInitial
c is approximately the same as 

the one of σInitial
cEXP . In previous studies, the authors have shown that the 

adhesive strength of butt and lap joints can be expressed as a constant 
ISSF within the standard deviation 10 ~ 20 % [23,24,27]. Instead, Fig. 6
shows that the standard deviation of the step joint is about 50 %, which 
is much larger than that of other joints. This is probably because the 
difficulty to determine σInitial

cEXP in Fig. 6. The initial delamination occurs at 
Point A but the strain gauge is attached near Point B due to the difficulty 

Table 1 
Material properties of adhesive and adherend for step joint in Fig. 1 (E=Young’s modulus, ν = Poisson’s ratio, σBulk

B =Adhesive bulk strength, σButt
c =Butt joint strength in 

Fig. 4 when h = 0.05 mm, τLap
c,lb=25 = Lap joint strength in Fig. 10(c) when lb = 25 mm, Kσc = Critical ISSF, (α, β) = Dundurs parameters, λA, λB

1 ,λ
B
2=Singularity index).

(a) Step joint by Mori et al. [30,31]

Material E 
[GPa]

ν σBulk
B [MPa] σButt

c,h=0.05[MPa] KButt
σc [MPa •mm0.296] α β λA λB

1 λB
2

Adherend: 
S45C

206 0.33 570 39.4 7.18 0.968 0.235 0.704 0.680 0.999

Adhesive: Epoxy resin 3.33 0.34 40

(b) Reference results in Fig. 10(a), (b) by Naito et al. [6]

Material E 
[GPa]

ν σBulk
B [MPa] σButt

c,h=0.05[MPa] KButt
σc [MPa •mm0.260] α β λA λB

1 λB
2

Adherend: 
Aluminum

68.6 0.33 260 30 6.37 0.894 0.214 0.740 0.664 0.999

Adhesive: Polyimide 3.77 0.342 110

(c) Reference results in Fig. 10(c) by Park et al. [40]

Material E 
[GPa]

ν σBulk
B [MPa] τLap

c,lb=25[MPa] KLap
σc [MPa •mm0.394] α β λA λB

1 λB
2

Adherend: 
Aluminum

68.9 0.3 260 22.7 61.6 0.870 0.066 0.689 0.606 0.999

Adhesive: Epoxy resin 4.2 0.45 58.7
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of attaching near Point A [30,31].

4. Singular stress σyB(r2) at Point B by analyzing partially 
delaminated step joint

In the first step delaminated step joint in Fig. 1(b), a singular stress 

field is formed at Point B. This singular stress field at Point B in Fig. 1(b) 
is identical to that at Point B* of the lap joint in Fig. 7. The ISSF in Fig. 7
was investigated in previous studies [26,27], which can be used as a 
reference solution in this study. It is known that two singular stress fields 
occur in the lap joints [26,27], and the stress distribution around Point 
σyB(r2) can be expressed in Equation (7) in terms of two ISSFs KB

σ,λB
1
,KB

σ,λB
2
. 

σyB(r2) =
KB

σ,λB
1

r2
1− λB

1
+

KB
σ,λB

2

r2
1− λB

2
(7) 

Here, r2 is the distance in the x direction from point B (see Fig. 1(b)). The 
singularity index λB at Point B can be obtained from the following 
characteristic Equation (8) [40,41]. 

Equation (8) always has two real roots λB
1 , λ

B
2 < 1 [26,27]. However, 

since λB
2 ≈ 1, the influence of the second term on the right side of 

equation (7) can be almost ignored. In other words, the singular stress 
field at point B can be expressed by one ISSF KB

σ,λB
1 

as shown in Equation 

(9) [26,27]. 

σyB(r2) =
KB

σ,λB
1

r2
1− λB

1
+

KB
σ,λB

2

r2
1− λB

2
≈

KB
σ,λB

1

r2
1− λB

1
(∵λB

2 ≈ 1) (9) 

The ISSF KB
σ,λB

1 
at the end of the bonded interface due to adhesive is 

expressed by Equation (10). 

KB
σ,λB

1
= lim

r→0

[
σyB(r2) • r1− λB

1

]
(10) 

Also, the dimensionless ISSF FB
σ of Point A can be defined in Equation 

(11). Since FB
σ is dimensionless, similar shapes always have the same 

value, and can be applied up to the scale of electronic equipment. Here, 
σ∞

x is the far tensile stress, and h is the adhesive layer thickness. 

FB
σ =

KB
σ,λB

1

σ∞
x W1− λB

1
(11) 

Fig. 5. Dimensionless ISSF FA
σ = KA

σ /(σ∞
x W1− λA

) at Point A by varying number of steps NS obtained by fully bonded step joint in Fig. 1(a).

Fig. 6. Initial debonding external stress σInitial
c estimated as σInitial

c = KInitial
σc,ave/

(FA
σ W1− λA

) in comparison with experimentally obtained external stresses σInitial
cEXP 

and σFinal
cEXP.

Fig. 7. Reference model for point B.

4sin2( πλB)
{

sin2
(

πλB

2

)

−
(
λB)2

}

β2 +4
(
λB)2sin2( πλB)αβ+

{

sin2
(

πλB

2

)

−
(
λB)2

}

α2 − 4
(
λB)2sin2( πλB)β

− 2
{
(
λB)2cos

(
2πλB)+ sin2

(
πλB

2

)

cos
(
πλB)+

1
2
sin2( πλB)

}

α+ sin2
(

3πλB

2

)

−
(
λB)2

= 0
(8) 
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Fig. 8. Dimensionless ISSF FB
σ = KB

σ,λB
1
/(σ∞

x W1− λB
1 ) at Point B by varying number of steps NS obtained by partially delaminated step joint in Fig. 1(b).

Fig. 9. Stress distribution σxA around Point A in fully bonded step joint in comparison with stress distribution σyB around Point B in partially delaminated step joint.
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The outline of the analysis method to calculate the ISSF is described in 
Appendix B. The method is based on the proportional stress fields for 
unknown and reference problem. The detail of the method was indicated 
in previous papers [26,27].

Consider the partially delaminated step joint in Fig. 1(b) where a 
singular stress field occurs at Point B. The following discussion will be 
focused on the ISSF at Point B. Fig. 8 shows the ISSF FB

σ at Point B in the 
partially delaminated step joint under constant stress loading. As shown 
in Fig. 8, the ISSF FB

σ decreases with increasing the number of steps Ns. 
Unlike the ISSF at Point A obtained from the fully bonded step joint, the 
ISSF FB

σ decreases largely with increasing Ns. For example, the ISSF FB
σ 

whenNs = 10 is only 13.6 % of the ISSF FB
σ when Ns = 2. It should be 

noted that the ISSF FB
σ at Point B in Fig. 1(b) coincides with the ISSF of 

partially delaminated model when the last step is also delaminated as 
shown in Fig. 8(b) with an accuracy of 3 digits.

Fig. 9 shows the singular stress distribution σyB at Point B under 
constant stress σ∞

x = 1MPa obtained by partially delaminated step joint. 
Then, it is compared with the singular stress σxA at Point A under 

constant stress σ∞
x = 1MPa obtained by fully bonded step joint. Since the 

first step is delaminated, the total adhesive area is smaller than the one 
of fully bonded case, but as shown in Fig. 9, σyB is less than σxA. This is 
because after the first-step transverse delamination, delamination di-
rection must be changed to the longitudinal direction. As shown in Fig. 9
(b), the difference becomes much larger with increasing the number of 
steps Ns. For example, when Ns = 2, σyB is about 50 ~ 60 % of σxA, 
whereas when Ns = 10, σyB is only about 10 % of σxA. Therefore, the 
adhesive strength σ2nd

c at Point B is larger than the adhesive strength 
σInitial

c at Point A, and with increasing Ns this trend becomes more 
significant.

5. Evaluation of second-step delamination stress σ2nd
c at Point B 

by analyzing partially delaminated step joint

Fig. 10(a) illustrates ABA butt joint and ABA lap joint both consisting 
of A=Al-alloy, B=Polyimide adhesive. By using the specimens in Fig. 10, 
Naito et al. [6] compared the tensile bond strength and shear bond 

Fig. 10. Critical tensile stress σc for butt joint and lap joint with the adhesive area A = lb × t obtained by Naito et al.[6].
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strength experimentally. As shown in Fig. 10(a), when the adhesive 
layer thickness h = 0.05 mm, the average tensile strength was obtained 
as σButt

c ≅ 30MPa for the cylindrical butt joint in Fig. 10(a). In the lap 
joint in Fig. 10(a), the cross-section area A = W × t is half of the adhe-
sive area A = lb × t as can be expressed W× t = 0.5×lb × t. Therefore, 
the average external strength σLap lb=2W

c ≅ 20MPa is 2 times of the 
average shear strength τLap lb=2W

c = Pc/(lb × t) ≅ 10MPa for the lap 
joint. Then, σLap lb=2W

c is approximately 0.67 times of σButt
c as can be 

expressed σLap lb=2W
c = 0.67 σButt

c . Fig. 10(a) shows the experimental re-
sults of Naito et al. [6] obtained for ABA joints.

Although Naito et al. studied the lap joint when lb = 2W, this study 
focuses on the step joint in Fig. 1 which Mori et al. investigated when 
lb = 10W. Therefore, as shown in Fig. 10(b), the lap joint strength when 
lb = 10W should be evaluated. Fig. 10(c) shows the average shear 
strength of the lap joint by varying the overlap length lb investigated by 
Park et al. [42]. It is known that the average shear strength τLaplb=2W

c,ave is 

relatively insensitive to the adhesive area [42] or slightly decreases with 
increasing lbas shown in Fig. 10(c). In Fig. 10(c), the adhesive shear 
strength τLap

c,ave becomes half with increasing the overlap length lb from 
lb = 10 mm to lb = 50 mm. Therefore, by assuming that the bond 
strength τLap

c,ave becomes 0.5 ~ 1 times with increasing lb by 5 times as 
shown in Fig. 10(b), the adhesive strength σccan be roughly evaluated by 
2.5 ~ 5 times as σLap lb=10W

c = (2.5 ∼ )σLap lb=2W
c = (1.67 ∼ )σButt

c . In 
this way, in the following discussion, σLap lb=10W

c = (1.67 ∼ 3.33)σButt
c 

will be assumed. One may think that the average shear strength τLap
c,ave 

decreases as shown in Fig. 10(c) affected by the secondary bending. 
However, the authors have shown that the bending effect has been 
included in the ISSF analyzed and bending effects become smaller if the 
adherend thickness is sufficiently large as shown in the previous paper 
for lap joints [27].

Fig. 11 summarize the adhesive strength of the butt joint, lap joint, 
and step joint considered in this study. In Section 3, the initial debonding 

Fig. 11. Initial critical stress σInitial
c and 2nd critical tensile stress σ2nd

c of the step joint in Fig. 1 (a).
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of the fully bonded step joint was discussed. Then, Fig. 5 shows that the 
analyzed ISSF at Point A of the fully bonded step joint is insensitive to Ns. 
Based on the results, Fig. 11(a) shows σInitial

c = (0.95 ~ 1.15)σButt
c .

In Sections 4 and 5 above, the 2nd debonding stress σ2nd
c at Point B 

was considered after the first step is delaminated in Fig. 10 when 
lb ≅ 2W. Then, Fig. 11(b) illustrates σ2nd lb ≅2W

c = 0.67σInitial
c obtained 

from the following results.
(1) The lap joint strength ISSF can be expressed as the critical 

ISSF=const. as shown in Fig. A1 in Appendix A.
(2) The 2nd debonding strength σ2nd lb ≅2W

c can be evaluated from the 
same critical ISSF when NS = 2.

(3) The ISSF of the lap joint and the ISSF of the step joint are equal as 
shown in Fig. 8.

(4) Based on the same critical ISSF with Fig. 8, σ2nd lb ≅2W
c can be 

obtained when NS ≥ 4 as σ2nd lb ≅2W
c = 0.67σInitial

c .
Finally, when lb = 10W, Fig. 11(c) shows that σ2nd lb=10W

c = (2.5 ~ 
5)σ2nd lb ≅2W

c = (1.67 ~ 3.33)σInitial
c obtained from the following results 

(5). One may think that using the average stress at failure τc,ave = con-
stant 

(
σ2nd lb=10W

c = 5σ2nd lb ≅2W
c

)
contradicts using ISSF=constant. 

However, this study focuses only on 2nd debonding stress σ2nd
c , and 3rd 

debonding stress σ3rd
c will be the subject in future studies. In this paper, 

therefore, considering case σ3rd
c > σ2nd

c , the τc,ave = constant criterion is 
taken into account.

(5) Based on the variation of the average shear strength depending 
on the overlap length lbin Fig. 10 (c), the 2nd debonding strength when 
lb ≅ 10W can be evaluated as σ2nd lb=10W

c = (2.5 ~ 5)σ2nd lb ≅2W
c .

In the above discussion, the experimental data by Naito et al. [6] and 
Park et al. [42] are mainly considered for evaluating σ2nd

c . More directly, 
the results of NS = 2 in Fig. 3, that is, σInitial

c = 28.6 MPa and σFinal
c = 64.9 

MPa can be used as the data for σFinal
c . Since there are only two steps 

when NS = 2, 2nd delamination can be the final delamination as σ2nd
c =

σFinal
c . Therefore, as shown in Fig. 11(d), σ2nd

c = σFinal
c =(64.9/28.6)σInitial

c 

= 2.3 σInitial
c can be obtained from Fig. 3.

6. Comparison between second-step delamination stress σ2nd
c at 

Point B and final delamination stress σFinal
c

By applying the results in Section 5, the second step delamination 
stress σ2nd

c can be evaluated as σ2nd
c = (1.67 ~ 3.33) σInitial

c . Fig. 12 il-
lustrates the second step delamination stress σ2nd

c evaluated from 
partially delaminated step joint in comparison with the initial and final 
adhesive strength σInitial

cEXP and σFinal
cEXPexperimentally obtained. Here, the 

results of σ2nd
c is obtained from ISSF=const. of partially delaminated 

steeped joint with the results σ2nd
c = (1.67 ∼ 3.33)σInitial

c . For example, 
when the number of steps NS increases from NS = 2 to NS = 6, the 
experimentally obtained final strength σFinal

cEXP increases by (234.8/64.9) 

= 3.6 times, while the second step delamination stress σ2nd
c increases by 

(169.7/38.8) = 4.4 times. In this way, the experimental results show 
that the initial delamination stress 2σInitial

c ≈ σFinal
c when NS = 2 and 

3σInitial
c < σFinal

c when NS ≥ 6, the ISSF method can predict this variation 
consistently. In step joints, the direction of delamination progression 
must be changed in the lateral and longitudinal directions alternatively. 
That may result in differentiating the initial, 2nd and 3rd external 
stresses as can be expressedσInitial

c < σ2nd
c < σ3rd

c .Although, it is not clear 
whether which critical stress is the largest among σ2nd

c ,σ3rd
c ,⋯,σFinal

c , the 
maximum ctrical stress can be difined as σMax

c . As described in Section 5, 
if NS ≥ 6 and lb ≥ 10 W, the maximum bond strength σMax

c can be much 
higher than the other critical stress σInitial

c ≪σ2nd
c ≤ σMax

c resulting in 
much larger final bond strength σFinal

cEXP from σMax
c . This knowledge can be 

used to patch repair of aircraft by applying patches with longer overlap 
lengths and larger number of steps NS.

7. Conclusions

Usually if initial debonding occurs in adhesive joints by applying 
critical external load, the external force causes the final failure as can be 
expressed σInitial

c = σFinal
c . In step joints, however, final debonding load 

can be larger than initial debonding load as σInitial
c < σFinal

c . To clarify the 
improvement mechanism in step joints, this study focused on the sin-
gular stress fields as well as the ISSFs, which control the adhesive 
strength. The conclusions can be summarized as follows.

(1) Regarding the fully bonded step joint, the dimensionless ISSF FA
σ 

under σ∞
x = 1 MPa decreases slightly with increasing the number 

of steps Ns. For example, FA
σ whenNs = 10 is 84.8 % of FA

σ when Ns 

= 2. On the other hand, regarding the partially delaminated step 
joint focusing on Point B, the ISSF FB

σ under σ∞
x = 1MPa decreases 

significantly with increasing Ns. For example, FB
σ at Ns = 10 is 

only 13.6 % of the ISSF FB
σ for Ns = 2.

(2) The initial debonding stress evaluated from the fully bonded step 
joint with a constant ISSF agrees well with the initial debonding 
stress σInitial

cEXP (see Fig. 4). Furthermore, the variation of the second 
debonding stress σ2nd

c evaluated from the partially delaminated 
step joint agrees well with the variation of the final fracture stress 
σFinal

c (see Fig. 12).
(3) The reason why the final fracture strength σFinal

cEXP is much larger 
than the initial debonding strength as σInitial

cEXP ≪σFinal
cEXP when NS ≥ 6 

can be explained as follows. The dimensionless ISSF FB
σ under a 

constant load in the partially delaminated step joint decreases 
largely with increasing Ns (see Fig. 7) although FA

σ under a con-
stant load in the fully bonded step joint does not change very 
much (see Fig. 4).

Fig. 12. Second-step delamination stress evaluated from ISSF KB
σc = constant of partially delaminated steeped joint in comparison with initial critical stress σInitial

cEXP and 
final debonding stress σFinal

cEXP.
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(4) The reason why the final fracture strength σFinal
cEXP is larger than the 

initial debonding strength as σInitial
cEXP < σFinal

cEXP can be explained as 
follows. The singular stress distributions σxA in the fully bonded 
step joint under a constant load is larger than the singular stress 
distribution σyB in the partially delaminated step joint under a 
constant load as σyB < σxA(see Fig. 9). Since the stress σxA at Point 
A is always greater than the stress σyBat Point B, the 2nd external 
debonding load σ2nd

c must be larger than the external initial 
debonding load σInitial

c suggesting that σInitial
c <σ2nd

c <…<σMax
c . 

Here, σMax
c is defined as the maximum debonding stress among 

σ2nd
c ,σ3rd

c ,⋯,σNS
c .

(5) When NS ≥ 6 and lb ≥ 10 W, the final bond strength σFinal
c can be 

much higher than the initial critical stress σInitial
c ≪σFinal

c resulting 
in much larger bond strength. This knowledge can be used to 
patch repair of aircraft by applying patches with longer overlap 
lengths and larger number of steps NS.

CRediT authorship contribution statement

Nao-Aki Noda: Writing – review & editing, Validation, Supervision, 
Methodology, Conceptualization. Rei Takaki: Writing – review & 
editing, Writing – original draft, Visualization, Validation, Investigation, 
Formal analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. ISSF of the other adhesive joints

Regarding the butt joint in Fig. A1(a), the critical remote tensile stress σ∞
y = σc increases with decreasing the adhesive thickness h. This is because 

the ISSF under σ∞
y = 1 MPa decreases with decreasing the adhesive thickness h as shown in Fig. A1(b). Note that double singular points exist at the 

upside/downside interface ends and they interact with each other significantly with decreasing h. In this way, as shown in Fig. A1(c), the adhesive 
strength can be expressed as a constant ISSF [23]. In the previous studies, the ISSF variation over the entire bondline thickness range was clarified for 
cylindrical and prismatic butt joints [24]. The validity and usefulness of 2D analysis was confirmed in comparison with 3D analysis [25].

Regarding the lap joint in Fig. A1(d), the critical remote tensile stress σ∞
x = σc increases with increasing the overlap length lb. This is because the 

ISSF under σ∞
x = 1 MPa decreases with increasing the overlap length lb as shown in Fig. A1(e). In this way, as shown in Fig. A1(f), the adhesive strength 

can be expressed as a constant ISSF [27]. Although the lap joints have two singular stress fields that appear at the interface end, the second singularity 
index λ2 ≅ 1 and the second singular field is usually negligible [27].

 
 

 

 

 

  

   

 

  

Fig. A1. Prismatic butt joint Resin/S35C whose adhesive strength can be expressed as a constant ISSF [23] and lap joint whose adhesive strength can be expressed as 
a constant ISSF [27].
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Appendix B. Singular stress field at Point B of fully bonded step joint

In this paper, the singular stress field at Point A in Fig. 1 and the one at Point B in Fig. 2 were compared. Then, the results showed that larger 
external stress is necessary for the 2nd debonding at Point B in Fig. 2. Similarly, even in the fully bonded step joint in Fig. B1, the singular stress also 
appears at Point B. In this Appendix A, therefore, the singular stress fields at Point B of the fully bonded step joint will be compared with the one at 
Point A to confirm the initial debonding always occurs at Point A.

Note that the singular stress field at Point B in Fig. A1 is identical to the singular stress field at Point B* of a reinforced fiber in a matrix shown in 
Fig. B2. The ISSF of Point B* in Fig. B2 was previously analyzed by applying the body force method (BFM). The BFM is a powerful analytical method to 
obtain accurate solutions, which can be virtually regarded as exact solutions [43,44]. First, a single rectangular inclusion was solved by Chen-Nisitani 
[45,46]. Next two [47,48] and periodic array of rectangular inclusion [49] were analyzed. The ISSF of a single cylindrical inclusion [50] and periodic 
array of inclusions [51] were also analyzed. Those results were used to analyze a fiber pull-out test [52,53]. Those studies confirmed that the ISSF at B* 
in Fig.B2 has been obtained very accurately.

The stress distribution around the corner B can be expressed as shown in Equation (B1) in terms of the ISSFs at Point B, KB
σ,λB . As shown in Eq. (B1), 

there are two singular stress fields, and the singularity index λ has two real roots for most material combinations.

Fig. B1. Fully bonded step joint to analyze the ISSF at Point B.

Fig. B2. Reference problem of a rectangular inclusion at Point B* for .

σB
x(r3) =

KB
σ,λB

1

r3
1− λB

1
+

KB
σ,λB

2

r3
1− λB

2 

σB
y (r4) =

KB
σ,λB

1

r4
1− λB

1
−

KB
σ,λB

2

r4
1− λB

2
(B1) 

Here, r3 is the distance in the y direction from point B, and r4 is the distance in the x direction from point B (see Fig. B1).
The singularity index λB

1 , λB
2 at in Eq. (B1) can be obtained from the following characteristic Equations (B2), (B3) [43,44] with the bisector angle 

θ = π/2. 

(α + β)2( λB
1
)2
[1 − cos(2θ) ]+ 2λB

1(α − β)sinθ{sin
(
λB

1θ
)
+ sin[λB

1(2π − θ)]}

+2λB
1(α − β)sinθ{sin

(
sin

[
λB

1(2π − θ)
]
− λB

1θ
)
}+

(
1 − α2) −

(
1 − β2)cos

(
2λB

1π
)

+(α2 − β2)cos[2λB
1(θ − π)] = 0 (B2) 

(α + β)2( λB
2
)2
[1 − cos(2θ) ]+ 2λB

2(α − β)sinθ{sin
(
λB

2θ
)
+ sin[λB

2(2π − θ)]}

+2λB
2(α − β)sinθ{sin

(
sin

[
λB

2(2π − θ)
]
− λB

2θ
)
}+

(
1 − α2) −

(
1 − β2)cos

(
2λB

2π
)

+(α2 − β2)cos[2λB
2(θ − π)] = 0 (B3) 

The local geometry around Point B is symmetric with respect to the bisector x of B as shown in Fig. B1 [42,43]. Therefore, the singular stress around 
B can be separated into two types; one is symmetric mode I singular stress field, and the other is skew-symmetric mode II type singular stress field 
[45–49,52,53] as shown in Equation (B4).

2σB
I (r) = σB

x (r3) + σB
y (r4), 

2σB
II(r) = σB

x(r3) − σB
y (r4) (B4) 
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It is known that σB
I (r) is proportional to 1/r1− λB

1 and σB
II(r) is proportional to 1/r1− λB

2 as shown in Eq. (B1). Those singular stress distributions are 
dominated by two distinct ISSFs denoted by KB*

I,λB
1 

and KB*
II,λB

2 
as shown in Eq.(1). Two ISSFs can be defined as shown in Eq. (B5). In this equation, we can 

put r = r3 = r4.

KB
I,λB

1
= lim

r→0

[
σB

I (r) • r1− λB
1

]
,

KB
II,λB

2
= lim

r→0

[
σB

II(r) • r1− λB
2

]
(B5) 

In the previous studies, the ISSFs in Fig. B2 were analyzed by the body force method[41]. The dimensionless ISSFs FB
I,λB

1
, FB

II,λB
2 

at Point B in the step joint 

in Fig. B1 are expressed as shown in Equation (B6). Since FB
I,λB

1 
and FB

II,λB
2 

are dimensionless, similar shapes must have the same values, and they can be 

applied up to the scale of electronic equipment.
FB

I,λB
1
= KB

I,λB
1
/(σ∞

x h1− λB
1 ),

FB
II,λB

2
= KB

II,λB
2
/(σ∞

x h1− λB
2 ) (B6) 

Regarding the rectangular inclusions in Fig.B2, the dimensionless ISSFs FB*
I,λB

1 
and FB*

II,λB
2 

at Point B* in Fig.B2 can be defined in the same way as shown in 

Eq. (B7) [41]. The exact solution FB*
I,λB

1 
and FB*

II,λB
2 

was provided in the previous papers and they can be used as a reference solution to analyze FB
I,λB

1
, FB

II,λB
2 

in 

Fig. B1 by applying the same FEM mesh. The detail of this analysis method is indicated in Appendix B.
FB*

I,λB
1
= KB*

I,λB
1
/(σ∞

x h1− λB
1 ),

FB*
II,λB

2
= KB*

II,λB
2
/(σ∞

x h1− λB
2 ) (B7) 

By using the reference solution in Fig. B2, the ISSF of Point B in Fig. B1 can be obtained and can be expressed in Appendix B. Fig. B3 compares the 
stress σA

x (r3) around Point A and the stress σB
x(r3)around point B when Ns = 10. Here, the stress σA

x (r3) was determined from Equation (1) in Section 3
with FEM analysis. And the stress σB

x(r3) was determined from Equation (B1) with FEM analysis. As shown in Equation (B8), shows the range Its scope 
of application is as follows. In other words, the stress σA

x (r1) near point A is expressed by equation (B8). On the other hand, the stress σB
x(r3) around 

Point B is expressed in Equation (B9). 

σA
x (r1) =

KA
σ,λA

r1
1− λA (r ≤ 5.5μm),

σA
x (r1) = σA

FEM(r)(r > 5.5μm) (B8) 

σB
x(r3) =

KB
I,λB

1

r3
1− λB

1
+

KB
σ,λB

2

r3
1− λB

2
(r ≤ 0.35μm),

σB
x(r3) = σB

FEM(r) (r > 0.35μm) (B9) 

3134645895776Comparison between σA
x (r1) and σB

x(r3) shows that σA
x (r1) > σB

x(r3) when for Ns = 2 10, and σA
x (r1) is about 4 ~ 5 times larger than 

σB
x(r3). Therefore, it is thought that the initial debonding occurs at Point A. Therefore , the initial debonding occurring at point A can be confirmed.

Fig. B3. Comparison between and in fully bonded step joint when.
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Appendix C. Mesh independent ISSF analysis method based on the proportional stress field

To obtain the ISSF at the interface end, singular stress must be analyzed very accurately. However, usually FEM stress varies depending on FEM 
mesh size and it cannot provide the ISSF directly. In the previous study, therefore, by applying the same FEM mesh size and the same FEM mesh 
pattern, FEM analysis was performed to the unknown and the reference problems. Here, the unknown problem is the problem to be analyzed, and the 
reference problem is the one whose exact solution is available. The unknown and the reference problems must be chosen so that they should have the 
identical singular stress field with different ISSF. Then, the FEM stress ratio of the unknown problem and the reference problem is focused since the 
FEM stress ratio may cancel the error included in FEM stress. In other words, by taking the FEM stress ratio, included FEM error can be canceled and 
the mesh dependency disappears since they have identical singular stress field but different ISSF [23–28]. The ISSF of an unknown problem can be 
obtained by multiplying the ratio of FEM stress and the ISSF of a reference problem chosen as the exact solution previously obtained. This analysis 
method is based on the fact the FEM stress distributions as well as the real singular stress fields are identical and proportional for the unknown and the 
reference problems [23–28]. Previously, Nisitani et al proposed the similar method to analyze crack stress intensity factors focusing on the FEM stress 
ratio at the crack tip named “the crack tip stress method” [54]. In this analysis, however, as can be shown later in Table C1, the focused FEM stress 
focused does not have to be located at the interface end.

From the discussion above, the ISSF ratio (e.g., FA
σ,λA/FA*

σ,λA ) of the reference problem and the unknown problem can be obtained as the FEM stress 

ratio (e.g., σA
FEM(r)/σA*

FEM(r)) as can be expressed in Equation (C1). Here, σA*
FEM(r) is the stress distribution at point A* in the reference problem obtained 

by FEM analysis, and σB*
I,FEM(r) and σB*

II,FEM(r) are the mode I and mode II stress distributions at point B* in the reference problem obtained by FEM 
analysis, respectively. Also, σA

FEM(r) is the stress distribution at point A in the unknown problem obtained by FEM analysis, and σBi
I,FEM(r) and σBi

II,FEM(r)
are the mode I and mode II stress distributions at point B in the unknown problem obtained by FEM analysis, respectively. 

FA
σ,λA

FA*
σ,λA

=
σA

FEM(r)
σA*

FEM(r)
,

FBi
I,λB

1

FB*
I,λB

1

=
σBi

I,FEM(r)
σB*

I,FEM(r)
,

FBi
II,λB

2

FB*
II,λB

2

=
σBi

II,FEM(r)
σB*

II,FEM(r)
(C1) 

Table C1 shows the FEM stress distribution at Points A and B in the unknown problem obtained in Fig. A1 when the smallest mesh size emin = h/
(
34 × 50

)
mm and emin = h/

(
35 × 50

)
mm and the number of steps NS = 4. Table C1(a) shows the FEM stress distribution σA

FEM(r) around Point A in 
Fig. B1. Table C1(b) shows the FEM stress distribution of mode I σB1

I,FEM(r), and Table C1(c) shows the FEM stress distribution of mode II σB1
II,FEM(r). Those 

Tables also show the FEM stress ratios σA
FEM(r)/σA*

FEM(r),σ
B1
I,FEM(r)/σB*

I,FEM(r), σ
B1
II,FEM(r)/σB*

II,FEM(r).
From Table C1, it can be seen that the FEM stress distributions σA

FEM(r), σB1
I,FEM(r), σ

B1
II,FEM(r) in Fig. B1 vary greatly depending on the mesh size. On the 

other hand, the FEM stress ratio distributions of Fig. B1 and of Fig.B2 σA
FEM(r)/σA*

FEM(r),σ
B1
I,FEM(r)/σB*

I,FEM(r), σ
B1
II,FEM(r)/σB*

II,FEM(r) are mesh-independent to 
the three significant digit. In other words, Table C1 clarifies that the ISSF of the unknown problem can be determined exactly by focusing on the FEM 
stress ratio distribution.
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Table C1 
Mesh independency of the present analysis method (h = adhesive thickness 0.05 mm).

(continued on next page)
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Table C1 (continued )
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